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Abstract— Data-driven deep learning has been considered a
promising method for building powerful models for medical
data, which often requires a large amount of diverse data to be
sufficiently effective. However, the expensive cost of collecting
and the privacy constraints lead to the fact that existing medical
datasets are small-scale and distributed. Federated learning
via model distillation is a data-private collaborative learning
where the model can leverage all available data without direct
sharing. The data knowledge is shared by distillation through
the multi-site average prediction scores on the public dataset.
However, the average consensus is suboptimal to individual
client due to data domain shift in MRI data caused by
acquisition protocols, recruitment criteria, etc. In this work,
we propose a federated conditional mutual learning (FedCM)
to improve the performance by considering the clients’ local
performance and the similarity between clients. This work is
the first federated learning on multi-dataset Alzheimer’s disease
classification by 3DCNN using T1w MRI. Our method achieves
the best recognition rates comparing with FedMD and other
frameworks. Further visualization and relevance ranking on
the region of interests (ROI) in human brains implies that
the left hemisphere may have greater relevance than the right
hemisphere does. Several potential regions are listed for future
investigation.

I. INTRODUCTION

With an aging global population, age-related disorders
have become a major health problem. Alzheimer’s disease
(AD) is the most common form of dementia, of which neu-
rodegenerative conditions are considered the most dreaded
disease to the elderly. The prevalence of AD is around 3%
at the age of 65 and is astonishing 33% for those that are 80
years old and more [1]. Mild cognitive impairment (MCI) has
been generally taken as an intermediate state between normal
aging and the onset of AD; hence the recognition of MCI is
important for prophylactic treatment of AD. The application
of deep learning for early detection and stage classifying
in AD by using non-invasive data has been considered as a
promising clinically assistive method. However, modern DL
models require a large amount of data to achieve clinical-
grade accuracy, while the privacy concerns restrict access or
data sharing in the healthcare domain [2].

Federated Learning (FL) is a learning paradigm that
holds great promise on distributed learning by training the
algorithm collaboratively across sites without exchanging the
data itself [3]. In 2017, McMahan et.al proposed Federated
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Averaging(FedAvg)[4] following a server-client setup with
repeated steps: (1) the local clients train its model for several
epochs, and transmit the model weights to the center; (2)
the center server collects and aggregate a global model by
weight averaging; (3) the clients obtain the global model
as the initial model for next local training. Recent studies
have shown that models trained under the FL framework
have better performance than models that only see isolated
site-specific data. Compared with centralized data training,
comparable performance can also be achieved[5][6].

Nevertheless, this collaborative framework, while designed
for privacy, is still vulnerable to inference attacks by the
malicious server or clients through model weight sharing.
Malicious members can update the fallacious weight to mis-
lead the update direction or reconstruct other members’ data
through the pattern encoded in the parameters of the shared
model[7]. FL scheme also limits the diversity of the model
structure to handle non-IID clients. In addition, the central-
ized model may be not well-adapted to individual client due
to the data size variability where clients have a varying
data amount with distinct data distributions[8]. Inspired
by the knowledge transfer algorithms, Federated Learning
via Model Distillation (FedMD)[9] leverages knowledge
distillation[10] to achieve model heterogeneity by sharing
the prediction on public data to obtain an average con-
sensus as teacher prediction without sharing private data
or model structure. In the absence of direct contact with
model weights, this method also prevents reconstruction
attacks. However, the average consensus lacks the ability to
handle site-wise heterogeneity. In MRI data, the variability
of scanners and sites are confounds that hinder the direct
pooling of data collected from different sites due to domain
shift results from a range of issues, e.g., MRI acquisition
protocols, recruitment criteria, different machines, etc.[11].

In this work, we propose FedCM, a novel federated mutual
distillation framework with a conditioning mechanism on
site-wise performance and probability distribution similarity.
We verified the effectiveness of our approach in Alzheimer’s
disease binary and three-class classification using structural
magnetic resonance image (sMRI). In order to simulate
the scenario where the clients are composed of different
collection sites, we used 3 public datasets (including ADNI,
OASIS, and AIBL) and split them into sub-datasets by sites
as local clients. In a follow-up analysis, we demonstrate the
model attention visualization on the region of interests(ROIs)
of sMRI, and discuss the attention differences between 8
different model training frameworks.
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TABLE I: Demographic information

Dataset Label Subjects Sessions Male Female Age

ADNI
CN 169 628 306 322 76.2±5.2
MCI 301 1142 689 453 74.4±7.2
AD 139 366 187 179 75.9±7.3

OASIS
CN 316 316 119 197 45.1±23.9
MCI 70 70 31 39 76.2±7.2
AD 30 30 10 20 78.0±6.9

AIBL-1
CN 317 555 249 306 74.8±6.6
MCI 77 111 59 52 77.1±6.7
AD 69 102 43 59 76.7±7.4

AIBL-2
CN 168 303 141 162 72.4±6.0
MCI 47 61 40 21 75.0±7.4
AD 29 37 19 18 74.0±8.6

II. RESEARCH METHODOLOGY

A. MRI Data Description and Preprocessing

Data used in the preparation of this work were obtained
from three open datasets: the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database 1 [12], the Open Ac-
cess Series of Imaging Studies(OASIS-1) [13], the Australian
Imaging, Biomarker & Lifestyle Flagship Study of Ageing
(AIBL) Study [14].

In this work, we used probability maps of GM from T1-
weighted (T1w) MRI as our image input. The MRI scans
were preprocessed with the Clinica software platform 2 [15].
First, the raw datasets were converted into BIDS format,
and the t1-volume preprocessing pipeline of clinica was
then applied to the images [16]. In this pipeline, tissue
segmentation, bias correction, and spatial normalization were
performed simultaneously onto the input image using the
unified segmentation approach of SPM123. Next, a group
template is created using DARTEL[17] to map the subject’s
tissue probability to the native space. Lastly, the DARTEL
to MNI space method is applied to retrieve the images for
classification and analysis. The products of the pipeline are
the probability maps of gray matter (GM) and white matter
(WM). The subjects are categorized into three groups:

• CN: subjects who were diagnosed as cognitively normal.
• MCI: subjects who were diagnosed as mild cognitive im-

pairment (MCI), early MCI (EMCI), or late MCI (LMCI).
• AD: subjects who were diagnosed as Alzheimer’s Disease.

Noted that in OASIS, the patients with clinical dementia
rating (CDR) score 0 were labeled as CN, while patients
scoring with 0.5 or greater were labeled as AD, even for
those with CDR 0.5 who elsewhere may be considered to be
diagnosed as MCI. For correction, we re-assigned the label
to those in OASIS with CDR 0.5 as MCI, since this work
involves multiple data sites, different criteria of labeling may
mislead the interpretation.

The demographics of ADNI, OASIS, and AIBL are de-
scribed in Table I. The subsets of AIBL are split into AIBL-1
AIBL-2 depending on the the client data centers.

1adni.loni.usc.edu
2www.clinica.cun
3https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

Fig. 1: A schematic of our proposed federated conditional
mutual learning framework.

B. Task Definition

Given a large public dataset D0 := {(X0
i , y

0
i )}

N0
i=1

and K small client datasets splitted into training set
Dk,tr := {(Xk,tr

i , yk,tri )}Nk,tri=1 and validation set Dk,val :=

{(Xk,val
i , yk,vali )}Nk,vali=1 , our objective is to find the optimal

fk for each client k that could perform beyond using each
individual site’s training data while only allow to access
public D0 and Dk. On the other words, we propose an
improved federated learning framework that utilize the public
dataset as an information sharing medium and benefit each
client’s learning without compromising their privacy. We will
detail our learning framework in the following section.

C. Federated Learning via Model Distillation (FedMD)

Our model is primarily motivated as an extension of Fed-
erated Learning via Model Distillation (FedMD)[9] that en-
ables federated learning for individual client models through
mutual consensus knowledge distillation while preserving
data privacy. Each private model Dk was initially trained
on the huge public dataset D0 which shares a similar task
with the private dataset. Then each client will then train on
its private training set Dk,tr for client-wise adaptation. To
perform the cross-clients knowledge distillation, each client
would then interpret the knowledge in the private model by
computing the prediction logits on the public dataset D0. Fi-
nally, these logits from each of the clients would be gathered
and averaged as teacher logits then further send back to each
client and fine-tune again as knowledge distillation for each
client. Note that the logits predicted on the public dataset
was the only information shared throughout the framework
to guarantee the privacy preservation.

D. Federated Conditional Mutual Learning (FedCM)

While the original FedMD has achieved great success on
federated learning particularly on the synthesized datasets[9],
there exist limitations in transferring framework into the
real-world medical application. The major constraint is that
the whole learning process relies on each client’s distilled
knowledge, but neglect the fact that there could exist a large
heterogeneity among clients and directly average the logits
as teacher knowledge could harm the individual site’s model
performance. To deal with this limitation, we propose the
Federated Conditional Mutual Learning (FedCM) that en-
ables the framework with client-aware Mutual Learning[18].
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TABLE II: A summary table for experimental results. Mean1: Mean AUC over 3 tasks in binary classification; *: where
ds15 is higher than transfer; **: where only predict on a specific label, is excluded when comparing scores ; bold: the
highest value.

OASIS
CN-AD CN-MCI MCI-AD Binary CN-MCI-AD

ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE Mean1 ACC AUC SEN SPE
UB 0.827 0.931 0.733 0.835 0.767 0.873 0.886 0.741 0.680 0.590 0.600 0.714 0.798 0.721 0.794 0.621 0.621

DS15 0.838 0.906* 0.933 0.829 0.808 0.836* 0.686 0.835 0.540 0.577 0.400 0.600 0.773 0.678 0.754* 0.577 0.843
TFL 0.809 0.863 0.867 0.804 0.352 0.515 0.686 0.278 0.560 0.589 0.467 0.600 0.655 0.389 0.601 0.427 0.427

FedAvg[4] 0.890 0.947 0.800 0.899 0.632 0.823 0.943 0.563 0.300 0.773 1.000** 0.000** 0.848 0.168 0.727 0.333** 0.667
FedMD[9] 0.925 0.972 0.800 0.937 0.653 0.899 0.971 0.582 0.640 0.564 0.200 0.829 0.812 0.702 0.816 0.574 0.873
FedCME 0.850 0.962 1.000 0.835 0.762 0.903 0.914 0.728 0.660 0.665 0.533 0.714 0.843 0.721 0.838 0.629 0.870
FedCMJ 0.931 0.942 0.400 0.981 0.845 0.905 0.771 0.861 0.700 0.726 0.533 0.771 0.858 0.705 0.705 0.333** 0.667

FedCME+J 0.919 0.963 1.000 0.911 0.824 0.905 0.857 0.816 0.680 0.636 0.400 0.800 0.835 0.745 0.816 0.647 0.874
AIBL-1

CN-AD CN-MCI MCI-AD Binary CN-MCI-AD
ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE Mean1 ACC AUC SEN SPE

UB 0.853 0.907 0.796 0.863 0.670 0.666 0.607 0.684 0.636 0.705 0.755 0.541 0.759 0.544 0.688 0.495 0.495
DS15 0.734 0.732 0.653 0.749 0.537 0.567 0.590 0.525 0.536 0.619* 0.531 0.541 0.639 0.536 0.652 0.483 0.777
TFL 0.817 0.919 0.857 0.810 0.478 0.714 0.836 0.395 0.573 0.575 0.408 0.705 0.736 0.416 0.595 0.408 0.408

FedAvg[4] 0.606 0.862 0.939 0.544 0.340 0.592 0.934 0.202 0.555 0.684 0.000** 1.000** 0.713 0.164 0.605 0.333** 0.667
FedMD[9] 0.904 0.928 0.796 0.924 0.713 0.700 0.607 0.738 0.664 0.679 0.408 0.869 0.769 0.598 0.723 0.564 0.792
FedCME 0.862 0.908 0.735 0.886 0.725 0.685 0.541 0.768 0.645 0.723 0.673 0.623 0.772 0.643 0.722 0.587 0.811
FedCMJ 0.891 0.913 0.735 0.920 0.756 0.713 0.541 0.806 0.664 0.724 0.633 0.689 0.784 0.760 0.775 0.333** 0.667

FedCME+J 0.888 0.934 0.388 0.981 0.809 0.709 0.508 0.878 0.655 0.672 0.531 0.754 0.772 0.660 0.732 0.555 0.799
AIBL-2

CN-AD CN-MCI MCI-AD Binary CN-MCI-AD
ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE Mean1 ACC AUC SEN SPE

UB 0.821 0.946 0.938 0.808 0.602 0.593 0.400 0.644 0.717 0.754 0.500 0.833 0.765 0.521 0.647 0.439 0.439
DS15 0.809 0.895 0.875 0.801 0.170 0.500 1.000** 0.000** 0.543 0.563 0.125 0.767 0.652 0.760 0.499 0.333** 0.667
TFL 0.722 0.933 1.000 0.692 0.455 0.559 0.667 0.411 0.674 0.681 0.250 0.900 0.724 0.484 0.651 0.427 0.427

FedAvg[4] 0.099 0.915 1.000** 0.000** 0.210 0.582 0.900 0.068 0.652 0.821 0.000** 1.000** 0.772 0.141 0.682 0.339 0.663
FedMD[9] 0.901 0.942 0.813 0.911 0.653 0.679 0.533 0.678 0.761 0.821 0.563 0.867 0.814 0.464 0.767 0.530 0.733
FedCME 0.827 0.973 1.000 0.808 0.602 0.703 0.633 0.596 0.761 0.840 0.625 0.833 0.838 0.391 0.817 0.643 0.751
FedCMJ 0.938 0.919 0.750 0.959 0.619 0.670 0.567 0.630 0.739 0.848 0.688 0.767 0.812 0.760 0.686 0.333** 0.667

FedCME+J 0.877 0.961 0.875 0.877 0.545 0.629 0.667 0.521 0.652 0.742 0.625 0.667 0.777 0.422 0.796 0.649 0.760

Algorithm 1: FedCM
Input : Public dataset D0, private dataset

Dk,tr, Dk,val, private model fk, for k=1...m
Output: Trained model fk

1 Initialize: Pre-train fk of each client to convergence
on the public D0 . Transfer Learning: Fine tune fk
with private Dk,tr.

2 while Collaboration training do
3 Evaluate: Each client evaluate the model on

private Dk,ts by cross-entropy loss Hk .
4 Communicate: Each client compute the class

scores on public data D0, and transmits it to the
server along with the last performance Hk. The
server collects the record from every clients,
then returns the collecting result to each client.

5 Mutual learn: Each client updates its model fk
by conditioned mutual loss ( Eq.3).

6 Revisit: Each client trains its model fk on own
private Dk,tr for few epochs.

Each client in FedCM periodically uploads the predicted
logits on the public data and the cross-entropy (CE) loss on
the private test data to a server. The server sends the set of
logits and CE loss of all clients except the receiving client
to the client. Then, each clients updates its knowledge by
mutual distillation, and then fine-tune on its private dataset
for personalization. The said operation of FedCM is depicted
in Figure 1.

Specifically, two additional client-wise mutual conditions

are explicitly incorporated into the framework:

• Entropy Ratio Conditioning (E): First, we want to ensure
that only reliable knowledge gets distilled and shared. To
evaluate a client model’s reliability, we calculate the cross-
entropy H(g) = −

∑C
c=1 yc log gc from the former evalu-

ation step, where g is the predicted class probability. Then
client j’s model reliability term αj could be formulated
as:

αj = 1 + e
−(

H(g)j
H(g)k

)γ1 (1)

where the larger αj refers that client j’s model is more
reliable during knowledge distillation. The difference en-
larges hyperparameter γ1 is set as 2 in this work.

• Jensen Shannon Conditioning (J) [19]: Second, we
presume that a client should learn more from the clients
with similar statistical distributions to reduce client bias.
To measure the heterogeneity of two clients’ samples, we
utilize JS Divergence , DJS(P ||Q) = 1

2 DKL(P ||M) +
1
2 DKL(Q||M) for computing the probability distribu-
tion divergence, where M = P +Q

2 . Jensen Shannon
(JS) Divergence is a symmetrized and smoothed ver-
sion of Kullback-Leibler (KL) divergence DKL(P ||Q) =∑
x⊆X P (x) log2

P (x)
Q(x) , where P and Q are probability

distributions. The value of JS divergence is bounded by
0 and 1, and is 0 for identical distributions.

βj = (1−DJS( fk(x0) || fj(x0) ))γ2 (2)

where the larger βj refers that the data of client j and client
k are relatively homogeneous. The difference enlarges
hyperparameter γ2 is set as 2 in this work.
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Finally, the conditioned mutual distillation loss can be
formulated as:

Lkdistil =
1

N0

m∑
j 6=k

N0∑
i

αj βj ‖fk(x0i ))− fj(x0i )‖ (3)

III. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

We carried out the classification as binary class and three-
class task of CN, MCI and AD for full comparison. Because
of the scarcity of AD label, we split each dataset into train
and test set with a ratio of 50%-50%. The performance
was evaluated in accuracy (ACC), area under curve (AUC),
sensitivity (SEN) and specificity (SPE). The metrics are
averaged in 3-class classification.

1) Comparison Models: We conduct our experiment with
8 models for comprehensive comparison. ADNI dataset was
assigned as public dataset and OASIS, AIBL-1, AIBL-2 as
each client’s private dataset.

The base 3DCNN architecture based on VGG7 net that
consists of six 3D-convolutional layers, which kernel size
is 3x3x3 and stride is 1, with numbers of channels 8-8-16-
16-32-32, four max-pooling layers and two fully-connected
layers. The private train set was down-sampled by 15 for
each label to simulate the extremely small dataset.
• Upperbound(UB): The pre-trained 3DCNN is fine-tuned

on the aggregation of DS15 samples from all client.
• DS15: The base 3DCNN is trained on the down-sampled

private set (DS15 sample) with max epoch = 100. The
patience is set as 5 for early stopping.

• Transfer Learning(TFL): The base 3DCNN is pre-trained
on public dataset, then fine-tuned on private DS15 sample
dataset.

• FedAvg[4]: The knowledge is exchanged by periodically
updating the model initialization weights with the average
model weights from every clients.

• FedMD[9]: The knowledge is exchanged by distillation
through the average logits of each clients on public dataset.
Details are depicted in Sec. II-C.

• FedCM: To compare the effectiveness of two conditioning
terms, we construct FedCME as FedCM with entropy
ratio conditioning; FedCMJ as FedCM with JS condi-
tioning; FedCME+J as FedCM with both conditioning.

The batch size of each model was set as 16. The 3DCNN
was optimized using Adam optimizer with learning rate =
0.001.

B. Experimental Results and Discussion

Table II. summarizes our complete experimental results.
Our proposed method achieves the best recognition rates
in most of the tasks among 8 comparison models. Several
observations can be summarized. In binary classification,
AUC is sufficient for evaluating a model’s performance,
while all metrics should be considered for a full comparison
in a 3-class classification.

In general, the recognition ability of DS15 is low, as
expected, in both binary or 3-class tasks. However, we found
that the TFL functions is worse than DS15 in most of the
tasks trained on OASIS. The phenomenon could be related
to the differences between ADNI and OASIS caused by the
severe age distributional difference, and it is known that the
brain structure varies significantly with age [20].

Then, we observed that the AUC is enhanced in binary
tasks after applying FedAvg comparing with DS15, while
the 3-class task’s result is still unsatisfying. Also, we noticed
that both FedCMJ and FedAvg consistently predict on a
specific label in 3-class tasks (demonstated by a value of
0.333 SEN). This phenomenon could probably be related
to the poor performance of initial transfer. In FedAvg, an
originally well-performed model may be degraded signifi-
cantly by another sub-optimal model through averaging. This
procedure continuously leads FedAvg to a worse recognition
ability. In FedCMJ , the models tend to learn from the
model with similar probability distribution which could be
detrimental when both models are starting at a wrong initial
state.

In viewing all of the results, our proposed methods out-
perform the former frameworks in our experiment. In binary
classification, by averaging the AUC results over the binary
tasks (Mean1), FedCMJ has the highest average AUC
0.858 in OASIS and 0.784 in AIBL-1, and FedCME has the
highest value of 0.838 in AIBL-2. In 3-class tasks, FedCME

and FedE+J are relatively better than FedMD considering
the comprehensive performance of AUC, SEN, and SPE.
This indicates that our proposed conditioning distills the
model with more effective knowledge than FedMD does.

Finally, we noticed that the model using the distillation
framework usually outperforms the upperbound. This may
imply that the model learns from the latent knowledge which
is less affected by irrelevant noises.

To conclude, our proposed method efficiently improves
the model recognition rate on both binary classification and
three class classification, while two conditioning methods
show different importance under different initial recognition
abilities of the participants. The combination between CE
ratio conditioning and JS divergence conditioning is the key
to obtaining the best performing model.

IV. ANALYSIS

To further interpret the convolutional network for both
understandings the model’s operation and draw potential
clinical insights. We visualize the interpretation of models
through computing the gradient of the network’s output class
score with respect to the image [21]. We take the absolute
value of the computed gradient as relevance scores to every
pixel on the image. For better interpretation, the relevance
scores are sum-up by region of interest (ROI) for ranking
the importance of the anatomical regions of the brain to the
model. Here, We focus on discussing the relevance analysis
on recognizing AD patients by 3-class-task models trained
on OASIS dataset due to the page limits.
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TABLE III: A summary of the top 15 relevant ROI to 8 model framework predicting on AD patients of OASIS dataset. L:
left hemisphere, R: right hemisphere.

No. UB DS15 TSL FedAvg FedMD FedCME FedCMJ FedCME+J

1 Cerebelum (L) Angular gyrus (L) Cerebelum (L) Cerebelum (L) Cerebelum (L) Cerebelum (L) Cerebelum (L) Cerebelum (L)
2 Cerebelum (R) Angular gyrus (R) Cerebelum (R) Cerebelum (R) Cerebelum (R) Cerebelum (R) Cerebelum (R) Cerebelum (R)
3 Frontal gyrus (L) Cerebelum (L) Cuneus (L) Cingulate gyrus (L) Cingulate gyrus (L) Frontal gyrus (L) Cingulate gyrus (L) Cingulate gyrus (L)
4 Frontal gyrus (R) Cerebelum (R) Frontal gyrus (L) Cuneus (L) Cuneus (L) Frontal gyrus (R) Cuneus (L) Cuneus (L)
5 Fusiform gyrus (L) Cingulate gyrus (L) Frontal gyrus (R) Frontal gyrus (L) Frontal gyrus (L) Fusiform gyrus (L) Frontal gyrus (L) Frontal gyrus (L)
6 Hippocampus (L) Frontal gyrus (L) Fusiform gyrus (L) Frontal gyrus (R) Frontal gyrus (R) Hippocampus (L) Frontal gyrus (R) Frontal gyrus (R)
7 Hippocampus (R) Frontal gyrus (R) Hippocampus (L) Heschl’s gyrus (L) Fusiform gyrus (L) Hippocampus (R) Fusiform gyrus (L) Fusiform gyrus (L)
8 Lateral orbital gyrus (L) Fusifo m gyrus (L) Hippocampus (R) Hippocampus (L) Lingual gyrus (L) Lateral orbital gyrus (L) Hippocampus (L) Lingual gyrus (L)
9 Parahippocampal Gyrus (L) Lingual gyrus (L) Parahippocampal gyrus (L) Hippocampus (R) Parahippocampal gyrus (L) Parahippocampal gyrus (L) Lingual gyrus (L) Anterior orbital gyrus (R)
10 Parahippocampal Gyrus (R) Parahippocampal gyrus (L) Parahippocampal gyrus (R) Parahippocampal gyrus (L) Parahippocampal gyrus (R) Parahippocampal gyrus (R) Lingual gyrus (R) Lateral orbital gyrus (L)
11 Parietal gyrus (R) Parahippocampal gyrus (R) Parietal gyrus (R) Parahippocampal gyrus (R) Parietal gyrus (R) Parietal gyrus (R) Anterior orbital gyrus (R) Lateral orbital gyrus (R)
12 Precentral gyrus (R) Precentral gyrus (R) Precuneus (L) Parietal gyrus (R) Precentral gyrus (R) Precentral gyrus (R) Parahippocampal gyrus (L) Parahippocampal Gyrus (L)
13 Temporal gyrus (L) Temporal gyrus (L) Temporal gyrus (L) Temporal gyrus (L) Temporal gyrus (L) Temporal gyrus (L) Temporal gyrus (L) Precentral gyrus (R)
14 Temporal gyrus (R) Temporal gyrus (R) Temporal gyrus (R) Temporal gyrus (R) Temporal gyrus (R) Temporal gyrus (R) Temporal gyrus ® Temporal gyrus (L)
15 Vermis Vermis Vermis Vermis Vermis Vermis Vermis Vermis

(a) UB (b) DS15

(c) TSL (d) FedAvg

(e) FedMD (f) FedCME

(g) FedCMJ (h) FedCME+J

Fig. 2: The Visualization of the top 5 relevant ROI of 3DCNN
predicting AD patients on OASIS. The models are trained on
private OASIS dataset for 3-class tasks. The color stands for
the priority of relevance, where the color red has the highest
relevance value while yellow has the lowest.

In figure 2., we observed that all models share several
overlapping ROIs. Eight ROIs are attended by all the mod-
els (see table III), including of cerebellum (L, R), frontal
gyrus (L, R), parahippocampal gyrus (R), temporal gyrus
(L), and vermis, where these regions are proved to have
structural or volume change in AD patients [22]. However,
we noticed that there still exists significant differences among
the models: (1)attention difference on ROI, (2)models have
different priority to ROIs. Subsequent observations confirm
the significance of these two factors.

First, we focus on DS15 and UB. One is only allowed to
use a private DS15 sample, while the other has direct access
to all data samples. Interestingly, they all have a unique
viewpoint of ROIs: only DS15 values the left and right
angular gyrus, and UB additionally sees left Lateral orbital
gyrus comparing with other models. More interestingly,
studies have shown that the angular gyrus syndrome shares

many clinical features with Alzheimer’s disease, and these
two conditions are easily confused[23]. Secondly, we studied
the difference between UB and FedMD and noticed that
compared with UB, FedMD also identifies the left cingulate
gyrus, left lingual gyrus, and left cuneus. Then, we compare
our proposed FedCME+J , which has a better recognition
rates, and FedMD to see if there exists any distinct ROI
difference. The top 8 relevant ROIs of the two models are the
same. The disjoint sets between FedMD and FedCME+J

are listed: from FedMD, right parahippocampal gyrus, right
parietal gyrus, right temporal gyrus; from FedCME+J , right
anterior orbital gyrus, left and right lateral orbital gyrus. The
brain regions in the disjoint set of FedMD are indicated to
have changes in AD [22]. As for the FedCME+J , orbital
gyrus is examined to have widespread damages from the
viewpoint of neurofibrillary tangle (NFT) pathology [24].
Finally, we noticed that the left hemisphere always has higher
priority than right hemisphere, which may imply that left
hemisphere has more significance in recognizing Alzheimer’s
disease.

In summary, a model’s performance could be strongly
differed by a few attention differences or the slight change
in ROIs importance rankings. This phenomenon is consis-
tent with the difficulty in diagnosing neurological disorders
considering the entangled and subtle connections among
multiple brain regions. Moreover, we draw on the gradients
of the neural network to demonstrate that these ROIs could
have an influence in distinguishing CN, MCI, and AD. In
our future work, we could extend the statistical investigations
on the topography of pathological changes from a network-
based viewpoint.

V. CONCLUSION AND FUTURE WORK

In this work, we introduced a novel federal mutual knowl-
edge distillation framework and validated the framework for
classifying CN, MCI, and AD through 3DCNN prediction
training on a very small brain imaging data set. Experimental
results show that the proposed method is a promising for
multi-site FL to improve MR Image classification without
compromising privacy. In 3-class classification, our method
achieved an accuracy rate of 74.5%, 76.0%, 76.0% in OASIS,
AIBL-1, and AIBL-2 respectively, which improved the result
of FedMD by 4.3%, 16.2%, 29.7%. Compared with FedMD,
FedCM can help improve performance by 6.8%, 2.4%, and -
0.6% in the unweighted accuracy in the 2-class classification.
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In the future work, we will investigate the interaction
between two conditioning mechanisms for optimal parameter
setting. Lastly, we will continue to experiment using unla-
beled data or synthetic data (such as generative adversarial
network (GAN)) for better distillation.
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