LEARNING CORTICAL ANOMALY THROUGH MASKED ENCODINGFOR UNSUPERVISED HETEROGENEITY MAPPING

Hao-Chun Yang¹³, Ole Andreassen², Lars Tjelta Westlye², Andre F. Marquand³, Christian F. Beckmann³, Thomas Wolfers¹²³

¹ The Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TÜCMH), Germany ² Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Norway ³ Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Netherlands

Introduction

We introduces CAM (Cortical Anomaly Detection through <u>Masked</u> Image Modeling), a **Self-Supervised** framework designed for **Unsupervised Detection** of brain disorders using **Cortical-surface features.** We employ this framework for the detection psychotic spectrum, achieving an AUC of 0.696 for Schizoaffective and 0.769 for Schizophreniform, without the need for any labels.

Results

AUC of Unsupervised anomaly detection. C: Curvature, S: Sulcus, T: Thickness. *p-value < 0.05, **p-value < 0.01.

	IForest	GMM	VAE	DAE	CAM(C)	CAM(S)	CAM(T)
HC vs SZ	0.55	0.61*	0.60*	0.59	0.59	0.63*	0.67*
HC vs BD	0.50	0.54	0.58	0.58	0.57	0.55	0.63*
	0 61*	0 58	0 66*	0 66*	0.65*	0 64*	0 70**

Da

Dataset	HC vs SZF	0.47	0.65*	0.71**	0.70**	0.62*	0.65*	0.77**					
OP	Analysis												
Group	# Subjects	Age	Sex (M/F)	ROIs identified by two-tailed Student's t-test (p-value < 0.01)									
Healthy Control (HC)	1135	5-73	44%/56%	utilizing CAM(T)'s anomaly scores.									
	ROIs												
Group	# Subjects	Age	Sex (M/F)	HC vs		riangul	angularis (0.696)						
Healthy Control (HC)	290	18-59	54%/46%		Superior Ereptal (0.760)								
Schizophrenia (SZ)	165	19-60	65%/35%										
Bipolar Disorder (BD)	189	17-65	42%/58%	HC vs SZF		Kostrai iviiddle Frontal (U.750),							
Schizoaffective (SA)	33	20-62	30%/70%			Parsorbitalis (0.693),							
Schizophreniform (SZF)	22	19-45	50%/50%										

Method

Ensure: Anomaly score $s(\mathbf{X})$.

1: patch_size \leftarrow total number of patches in **X**

2: step \leftarrow int(patch_size/T)

3: start $\leftarrow 0$

4: end \leftarrow step

5: for t = 1 to T do

- Mask patches from start to end in X to obtain \mathbf{X}_m^t 6:
- Obtain reconstructions: $\hat{\mathbf{x}}_m^t \leftarrow g\phi(f_\theta(\mathbf{X}_m^t))$ 7:
- start \leftarrow end 8:
- end \leftarrow start + step 9:

10: **end for**

11: $\hat{\mathbf{X}}_{\text{recon}} \leftarrow [\hat{\mathbf{x}}_m^1, \hat{\mathbf{x}}_m^2, ..., \hat{\mathbf{x}}_m^T]$ 12: Compute the anomaly score: $s(\mathbf{X}) = ||\mathbf{X} - \hat{\mathbf{X}}_{recon}||_1$.

Conclusion

We demonstrate a scalable approach for anomaly detection of complex brain disorders based on cortical abnormalities.

Reference

[1] Christopher J Markiewicz, et al., "The openneuro resource for sharing of neuroscience data," eLife, vol. 10, pp. e71774, oct 2021. [2] Kristina C Sk°atun , et al., "Global brain connectivity alterations in patients with schizophrenia and bipolar spectrum disorders," Journal of Psychiatry and Neuroscience, vol. 41, no. 5, pp. 331–341, 2016. [3] Thomas Wolfers, et al., "Replicating extensive brain structural heterogeneity in individuals with schizophrenia and bipolar disorder," Human brain mapping, vol. 42, no. 8, pp. 2546–2555, 2021.