### A SIAMESE CONTENT-ATTENTIVE GRAPH CONVOLUTIONAL NETWORK FOR PERSONALITY RECOGNITION USING PHYSIOLOGY

### Hao-Chun Yang, Chi-Chun Lee

Behavioral Informatics and Interaction Computation Lab, National Tsing Hua University, Taiwan MOST Joint Research Center for AI Technology and All Vista Healthcare, Taiwan





# Background

## What are personalities



- A psychological construct
- Stable & Measurable attributes
- Influence:
  - Emotion Feeling
  - Behavior Responses
  - Decision Making



### **Personality as External Functions**

- Previous researches show that ...
- Personalities could be observed through expressive cues:
  - Questionaire (have been long developed in psychology)
  - Text: writing style, word choice [1]
  - Social Profiles: #Likes, #status updates, #friends, #groups [2]
  - Preference: music genre, TV programs [3,4]
- All these requires subject's (spontaneous) external behaviors !



## **Personality as Internal Reactions**

- What we proposed here:
- Personality traits could be "Aroused" unconsciously !
  - Inference subject's personality through stimulated physiology
  - No need the subject to "TO ANYTHING"
- Through monitoring subject's internal (physiology) responses, we could have a peek on their personalities



## Contribution

- Multimodal Personality recognition using physiology by Graph Learning
- Integrate Visual Semantic Vectors for Siamese Attention Network
- Multimedia impact toward personality induction on physiology



# **Experiment Setup**

### Dataset

- Dataset: Amigos[5]
- Stimuli:
  - 16 short emotional videos (duration < 250s)
  - Intended stimuli: High/Low Arousal or Valence (4 in each quadrant)

### Modalities

- ECG (Shimmer 2R, 256 Hz, 12 bit)
- EDA (Shimmer 2R, 128 Hz, 12 bit)
- EEG (Emotiv EPOC, 14 channel, 128 Hz, 14 bit)

### Subjects

• 40 (age 21~40, mean 28.3) => 38





### **Big5 Personalities**



| <b>Personality Trait</b> | Adjectives                                                              |
|--------------------------|-------------------------------------------------------------------------|
| Agreeableness (Agr)      | Appreciative, Forgiving, Generous,<br>Kind, Sympathetic                 |
| Conscientiousness (Con)  | Efficient, Organized, Planful, Reliable,<br>Responsible, Thorough       |
| Creativeness (Cre)       | Artistic, Curious, Imaginative, Insightful,<br>Original, Wide Interests |
| Emotion Stability (Emo)  | Unenvious, Relaxed, Unexcitable, Patient,<br>Undemanding, Imperturbable |
| Extraversion (Ext)       | Active, Assertive, Energetic, Enthusiastic,<br>Outgoing, Talkative      |



# **Proposed Architecture**

### Framework









## **Low-Level Physiology Descriptors**

**Table 1**. An overview of physiological low-level descriptors extracted from [12]. "F\*" indicates 15 statistical functions<sup>2</sup>. EEG features are calculated for each channel then concatenated as a single feature vector.

| Modality | Low-Level Descriptors                                                                                                                                                                                                                                                                 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEG(378) | Hjorth, Kurtosis, Skewness, First_diff_mean, First_diff_max,<br>Sec_diff_mean, Sec_diff_max, Slope_mean, Slope_var,<br>Wavelets, MaxPwelch, Entropy, ARMPB                                                                                                                            |
| ECG(51)  | number_of_artifacts, RMSSD, meanNN, sdNN, cvNN,<br>CVSD, medianNN, madNN, mcvNN, pNN50, pNN20, Triang,<br>Shannon_h, ULF, VLF, LF, HF, VHF, Total_Power, LFn,HFn,<br>LF/HF, LF/P, HF/P, DFA_1, DFA_2,Shannon, FD_Higushi,<br>Average_Signal_Quality, F* Cardiac_Cycles_Signal_Quality |
| EDA(68)  | F*SCR_Onsets, F*SCR_Peaks_Amplitudes,<br>F*EDA_Phasic, F*EDA_Tonic_Component                                                                                                                                                                                                          |

### • ECG:

• Heart Rete Variabilities

### • EDA:

- Phasic / Toni components
- Skin Conductance Responses

• EEG:

• Functional Statistics









BIIC







BIIC

# **Results and Analysis**

## **Parameter Settings**

- 10-fold subject independent CV
- Hyperparameter grid searches:
  - Dropout rate between [0:2; 0:5]
  - learning rate among [0:01; 0:005; 0:001]
  - Batchsize:16, the max
  - Epoch: max 200 with early stop
- The final evaluation metric used is the unweighted average recall (UAR).



**Table 2**. A summary of recognition results. '-c': concatenate a subject's all physiological responses as a single vector for classification [8]; '-v': predict personality though majority voting of each response; Aro: Arousal; Val: Valence. Both of these two indicate the emotional reference during sub-graph splitting. The chance UAR is 0.5.

|      | SVM-c | SVM-v | DNN-v | AMIL  | G-1-a | G-1-b | G-1-c | G-1-d | G-2-a |       | G-2-b |        | G-2-c |        | G-2    | 2-d    |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|--------|--------|
|      |       |       |       |       |       |       |       |       | Aro   | Val   | Aro   | Val    | Aro   | Val    | Aro    | Val    |
| Agre | 0.500 | 0.389 | 0.534 | 0.563 | 0.500 | 0.527 | 0.510 | 0.532 | 0.558 | 0.566 | 0.563 | 0.605  | 0.574 | 0.642* | 0.558  | 0.603  |
| Cons | 0.455 | 0.406 | 0.549 | 0.508 | 0.507 | 0.509 | 0.489 | 0.524 | 0.553 | 0.537 | 0.563 | 0.579* | 0.537 | 0.566  | 0.526  | 0.526  |
| Open | 0.500 | 0.452 | 0.517 | 0.529 | 0.505 | 0.510 | 0.512 | 0.593 | 0.647 | 0.655 | 0.674 | 0.676  | 0.682 | 0.674  | 0.676  | 0.721* |
| Emot | 0.473 | 0.553 | 0.605 | 0.553 | 0.611 | 0.608 | 0.613 | 0.618 | 0.637 | 0.618 | 0.671 | 0.624  | 0.689 | 0.624  | 0.695* | 0.650  |
| Extr | 0.500 | 0.509 | 0.543 | 0.538 | 0.602 | 0.583 | 0.585 | 0.587 | 0.679 | 0.656 | 0.676 | 0.663  | 0.668 | 0.671  | 0.682* | 0.661  |
|      |       |       |       |       |       |       |       |       |       |       |       |        |       |        |        |        |

**Baseline Models** 

SVM-c: Directly concatenate a person's all responses using SVM SVM-v: Majority vote a person's all responses using SVM DNN-v: Majority vote a person's all responses using DNN AMIL: Attention Multi-Instance Learning



**Table 2**. A summary of recognition results. '-c': concatenate a subject's all physiological responses as a single vector for classification [8]; '-v': predict personality though majority voting of each response; Aro: Arousal; Val: Valence. Both of these two indicate the emotional reference during sub-graph splitting. The chance UAR is 0.5

|      |       |       |       |       |       |       | -     | -     |       |       |       |        |       |        |        |        |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|--------|--------|
|      | SVM-c | SVM-v | DNN-v | AMIL  | G-1-a | G-1-b | G-1-c | G-1-d | G-2-a |       | G-2-b |        | G-2-c |        | G-2    | 2-d    |
|      |       |       |       |       |       |       |       |       | Aro   | Val   | Aro   | Val    | Aro   | Val    | Aro    | Val    |
| Agre | 0.500 | 0.389 | 0.534 | 0.563 | 0.500 | 0.527 | 0.510 | 0.532 | 0.558 | 0.566 | 0.563 | 0.605  | 0.574 | 0.642* | 0.558  | 0.603  |
| Cons | 0.455 | 0.406 | 0.549 | 0.508 | 0.507 | 0.509 | 0.489 | 0.524 | 0.553 | 0.537 | 0.563 | 0.579* | 0.537 | 0.566  | 0.526  | 0.526  |
| Open | 0.500 | 0.452 | 0.517 | 0.529 | 0.505 | 0.510 | 0.512 | 0.593 | 0.647 | 0.655 | 0.674 | 0.676  | 0.682 | 0.674  | 0.676  | 0.721* |
| Emot | 0.473 | 0.553 | 0.605 | 0.553 | 0.611 | 0.608 | 0.613 | 0.618 | 0.637 | 0.618 | 0.671 | 0.624  | 0.689 | 0.624  | 0.695* | 0.650  |
| Extr | 0.500 | 0.509 | 0.543 | 0.538 | 0.602 | 0.583 | 0.585 | 0.587 | 0.679 | 0.656 | 0.676 | 0.663  | 0.668 | 0.671  | 0.682* | 0.661  |

#### **Baseline Models**

SVM-c: Directly concatenate a person's all responses using SVM

SVM-v: Majority vote a person's all responses using SVM

DNN-v: Majority vote a person's all responses using DNN

AMIL: Attention Multi-Instance Learning

- a. No self-attention
- b. With self-attention from only physiology
- c. With self-attention from videoID one-hot
- d. With self-attention from Visual Semantic Encodings

**Table 2**. A summary of recognition results. '-c': concatenate a subject's all physiological responses as a single vector for classification [8]; '-v': predict personality though majority voting of each response; Aro: Arousal; Val: Valence. Both of these two indicate the emotional reference during sub-graph splitting. The chance UAR is 0.5.

|      | SVM-c | SVM-v | DNN-v | AMIL  | G-1-a | G-1-b | G-1-c | G-1-d | G-2-a |       | G-2-b |        | G-2-c |        | <b>G-</b> 2 | 2-d    |  |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|-------------|--------|--|
|      |       |       |       |       |       |       |       |       | Aro   | Val   | Aro   | Val    | Aro   | Val    | Aro         | Val    |  |
| Agre | 0.500 | 0.389 | 0.534 | 0.563 | 0.500 | 0.527 | 0.510 | 0.532 | 0.558 | 0.566 | 0.563 | 0.605  | 0.574 | 0.642* | 0.558       | 0.603  |  |
| Cons | 0.455 | 0.406 | 0.549 | 0.508 | 0.507 | 0.509 | 0.489 | 0.524 | 0.553 | 0.537 | 0.563 | 0.579* | 0.537 | 0.566  | 0.526       | 0.526  |  |
| Open | 0.500 | 0.452 | 0.517 | 0.529 | 0.505 | 0.510 | 0.512 | 0.593 | 0.647 | 0.655 | 0.674 | 0.676  | 0.682 | 0.674  | 0.676       | 0.721* |  |
| Emot | 0.473 | 0.553 | 0.605 | 0.553 | 0.611 | 0.608 | 0.613 | 0.618 | 0.637 | 0.618 | 0.671 | 0.624  | 0.689 | 0.624  | 0.695*      | 0.650  |  |
| Extr | 0.500 | 0.509 | 0.543 | 0.538 | 0.602 | 0.583 | 0.585 | 0.587 | 0.679 | 0.656 | 0.676 | 0.663  | 0.668 | 0.671  | 0.682*      | 0.661  |  |
|      |       |       |       |       |       |       |       |       |       |       |       |        |       |        |             |        |  |

#### **Baseline Models**

SVM-c: Directly concatenate a person's all responses using SVM

SVM-v: Majority vote a person's all responses using SVM

DNN-v: Majority vote a person's all responses using DNN

AMIL: Attention Multi-Instance Learning

- a. No self-attention
- b. With self-attention from only physiology
- c. With self-attention from videoID one-hot
- d. With self-attention from Visual Semantic Encodings

**Table 2**. A summary of recognition results. '-c': concatenate a subject's all physiological responses as a single vector for classification [8]; '-v': predict personality though majority voting of each response; Aro: Arousal; Val: Valence. Both of these two indicate the emotional reference during sub-graph splitting. The chance UAR is 0.5.

|      | SVM-c | SVM-v | DNN-v | AMIL  | G-1-a | G-1-b | G-1-c | G-1-d | G-2-a |       | G-2-b |        | G-2-c |        | G-2    | 2-d    |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|--------|--------|
|      |       |       |       |       |       |       |       |       | Aro   | Val   | Aro   | Val    | Aro   | Val    | Aro    | Val    |
| Agre | 0.500 | 0.389 | 0.534 | 0.563 | 0.500 | 0.527 | 0.510 | 0.532 | 0.558 | 0.566 | 0.563 | 0.605  | 0.574 | 0.642* | 0.558  | 0.603  |
| Cons | 0.455 | 0.406 | 0.549 | 0.508 | 0.507 | 0.509 | 0.489 | 0.524 | 0.553 | 0.537 | 0.563 | 0.579* | 0.537 | 0.566  | 0.526  | 0.526  |
| Open | 0.500 | 0.452 | 0.517 | 0.529 | 0.505 | 0.510 | 0.512 | 0.593 | 0.647 | 0.655 | 0.674 | 0.676  | 0.682 | 0.674  | 0.676  | 0.721* |
| Emot | 0.473 | 0.553 | 0.605 | 0.553 | 0.611 | 0.608 | 0.613 | 0.618 | 0.637 | 0.618 | 0.671 | 0.624  | 0.689 | 0.624  | 0.695* | 0.650  |
| Extr | 0.500 | 0.509 | 0.543 | 0.538 | 0.602 | 0.583 | 0.585 | 0.587 | 0.679 | 0.656 | 0.676 | 0.663  | 0.668 | 0.671  | 0.682* | 0.661  |
|      |       |       |       |       |       |       |       |       |       |       |       |        |       |        |        |        |

#### **Baseline Models**

SVM-c: Directly concatenate a person's all responses using SVM

SVM-v: Majority vote a person's all responses using SVM

DNN-v: Majority vote a person's all responses using DNN

AMIL: Attention Multi-Instance Learning

- a. No self-attention
- b. With self-attention from only physiology
- c. With self-attention from videoID one-hot
- d. With self-attention from Visual Semantic Encodings

**Table 2**. A summary of recognition results. '-c': concatenate a subject's all physiological responses as a single vector for classification [8]; '-v': predict personality though majority voting of each response; Aro: Arousal; Val: Valence. Both of these two indicate the emotional reference during sub-graph splitting. The chance UAR is 0.5

|      |       |       |       |       | <u> </u> | <u> </u> | -     | <u> </u> |       |       |       |        |       |        |        |        |
|------|-------|-------|-------|-------|----------|----------|-------|----------|-------|-------|-------|--------|-------|--------|--------|--------|
|      | SVM-c | SVM-v | DNN-v | AMIL  | G-1-a    | G-1-b    | G-1-c | G-1-d    | G-    | G-2-a |       | -2-b   | G-2-c |        | G-2    | 2-d    |
|      |       |       |       |       |          |          |       |          | Aro   | Val   | Aro   | Val    | Aro   | Val    | Aro    | Val    |
| Agre | 0.500 | 0.389 | 0.534 | 0.563 | 0.500    | 0.527    | 0.510 | 0.532    | 0.558 | 0.566 | 0.563 | 0.605  | 0.574 | 0.642* | 0.558  | 0.603  |
| Cons | 0.455 | 0.406 | 0.549 | 0.508 | 0.507    | 0.509    | 0.489 | 0.524    | 0.553 | 0.537 | 0.563 | 0.579* | 0.537 | 0.566  | 0.526  | 0.526  |
| Open | 0.500 | 0.452 | 0.517 | 0.529 | 0.505    | 0.510    | 0.512 | 0.593    | 0.647 | 0.655 | 0.674 | 0.676  | 0.682 | 0.674  | 0.676  | 0.721* |
| Emot | 0.473 | 0.553 | 0.605 | 0.553 | 0.611    | 0.608    | 0.613 | 0.618    | 0.637 | 0.618 | 0.671 | 0.624  | 0.689 | 0.624  | 0.695* | 0.650  |
| Extr | 0.500 | 0.509 | 0.543 | 0.538 | 0.602    | 0.583    | 0.585 | 0.587    | 0.679 | 0.656 | 0.676 | 0.663  | 0.668 | 0.671  | 0.682* | 0.661  |

#### **Baseline Models**

SVM-c: Directly concatenate a person's all responses using SVM

SVM-v: Majority vote a person's all responses using SVM

DNN-v: Majority vote a person's all responses using DNN

AMIL: Attention Multi-Instance Learning

- a. No self-attention
- b. With self-attention from only physiology
- c. With self-attention from videoID one-hot
- d. With self-attention from Visual Semantic Encodings

## Through attention analysis ...

**Table 2**. A summary of recognition results. '-c': concatenate a subject's all physiological responses as a single vector for classification [8]; '-v': predict personality though majority voting of each response; Aro: Arousal; Val: Valence. Both of these two indicate the emotional reference during sub-graph splitting. The chance UAR is 0.5.

|      | SVM-c | SVM-v | DNN-v | AMIL  | G-1-a | G-1-b | G-1-c | G-1-d | G-2-a |       | G-2-b |        | G-2-c |        | G-2    | 2-d    |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|--------|--------|
|      |       |       |       |       |       |       |       |       | Aro   | Val   | Aro   | Val    | Aro   | Val    | Aro    | Val    |
| Agre | 0.500 | 0.389 | 0.534 | 0.563 | 0.500 | 0.527 | 0.510 | 0.532 | 0.558 | 0.566 | 0.563 | 0.605  | 0.574 | 0.642* | 0.558  | 0.603  |
| Cons | 0.455 | 0.406 | 0.549 | 0.508 | 0.507 | 0.509 | 0.489 | 0.524 | 0.553 | 0.537 | 0.563 | 0.579* | 0.537 | 0.566  | 0.526  | 0.526  |
| Open | 0.500 | 0.452 | 0.517 | 0.529 | 0.505 | 0.510 | 0.512 | 0.593 | 0.647 | 0.655 | 0.674 | 0.676  | 0.682 | 0.674  | 0.676  | 0.721* |
| Emot | 0.473 | 0.553 | 0.605 | 0.553 | 0.611 | 0.608 | 0.613 | 0.618 | 0.637 | 0.618 | 0.671 | 0.624  | 0.689 | 0.624  | 0.695* | 0.650  |
| Extr | 0.500 | 0.509 | 0.543 | 0.538 | 0.602 | 0.583 | 0.585 | 0.587 | 0.679 | 0.656 | 0.676 | 0.663  | 0.668 | 0.671  | 0.682* | 0.661  |





 Table 3. A summary of average attention weights along 16 video stimulus. The bold part refers to weights larger than 0.2. '\*':

 The highest among all videos.

| The ingliest unlong un videos. |       |      |      |      |      |       |      |      |      |      |       |      |      |      |      |      |      |
|--------------------------------|-------|------|------|------|------|-------|------|------|------|------|-------|------|------|------|------|------|------|
| Personality                    | Model | 1    | 2    | 3    | 4    | 5     | 6    | 7    | 8    | 9    | 10    | 11   | 12   | 13   | 14   | 15   | 16   |
| Open                           | G-2-b | 0.1  | 0.12 | 0.12 | 0.15 | 0.14  | 0.13 | 0.1  | 0.13 | 0.11 | 0.22* | 0.11 | 0.12 | 0.15 | 0.12 | 0.17 | 0.14 |
| Open                           | G-2-d | 0.09 | 0.1  | 0.03 | 0.12 | 0.72* | 0.05 | 0.11 | 0.04 | 0.02 | 0.06  | 0.04 | 0.09 | 0.36 | 0.09 | 0.12 | 0.1  |
| Fmot                           | G-2-b | 0.11 | 0.13 | 0.12 | 0.14 | 0.15  | 0.14 | 0.12 | 0.15 | 0.11 | 0.19* | 0.12 | 0.11 | 0.12 | 0.15 | 0.14 | 0.11 |
| Emot                           | G-2-d | 0.11 | 0.09 | 0.07 | 0.08 | 0.43* | 0.1  | 0.02 | 0.19 | 0.09 | 0.16  | 0.12 | 0.15 | 0.1  | 0.14 | 0.14 | 0.12 |
| Fytr                           | G-2-b | 0.12 | 0.13 | 0.1  | 0.16 | 0.12  | 0.12 | 0.1  | 0.14 | 0.09 | 0.26* | 0.13 | 0.13 | 0.13 | 0.14 | 0.12 | 0.14 |
| EXU                            | G-2-d | 0.08 | 0.09 | 0.09 | 0.06 | 0.33* | 0.06 | 0.29 | 0.15 | 0.11 | 0.11  | 0.12 | 0.12 | 0.22 | 0.07 | 0.12 | 0.13 |
|                                |       |      |      |      |      |       |      |      |      |      |       |      |      |      |      |      |      |



## Through attention analysis ...

#### Key stimuli for Openness, Emotion Stability, Extraversion When Harry Met Sally (1989)

The Exorcist (1973)



Pink Flamingos (1972)





### Key stimuli specific for Extraversion

My Bodyguard (1980)



GBIIC

## Conclusion

- Multi-media visual information help personality recognition
- Openness, Emotion Stability, and Extraversion closely related with physiological responses
- Certain emotional multi-media stimuli could largely arouse a person's trait on physiology
- The mechanism of affective multimedia content triggering personality traits on physiology remains unknown



### Reference

- Navonil Majumder, Soujanya Poria, Alexander Gelbukh, and Erik Cambria, "Deep learning-based document modeling for personality detection from text," IEEE Intelligent Systems, vol. 32, no. 2, pp 74–79, 2017.
- Golnoosh Farnadi, Geetha Sitaraman, Shanu Sushmita, Fabio Celli, Michal Kosinski, David Stillwell, Sergio Davalos, Marie-Francine Moens, and Martine De Cock, "Computational personality recognition in social media," User modeling and user-adapted interaction, vol. 26, no. 2-3, pp. 109–142, 2016.
- 3. Alice Hall, "Audience personality and the selection of media and media genres," Media Psychology, vol. 7, no. 4, pp. 377–398, 2005.
- Tomas Chamorro-Premuzic and Adrian Furnham, "Personality and music: Can traits explain how people use music in everyday life?," British Journal of Psychology, vol. 98, no. 2, pp. 175–185, 2007.
- 5. Juan Abdon Miranda-Correa, Mojtaba Khomami Abadi, Nicu Sebe, and Ioannis Patras, "Amigos: A dataset for affect, personality and mood research on individuals and groups," arXiv preprint arXiv:1702.02510, 2017.



### THANK YOU !!



